
JOURNAL OF COMPUTATIONAL PHYSICS loo, 297-305 (1992) 

Numerical Solution of Eigenvalue Problems 
Using Spectral Techniques 

Y. Y. Su Am B. KH~MAMI 

Department of Chemical Engineering and the Materials Research Laboratory, Washington University, St. Louis, Missouri 63130 

Received August 21, 1990; revised July 29, 1991 

Two algorithms based on spectral Chebyshev and pseudospectral 
Chebyshev methods are presented for solving difficult eigenvalue 
problems that are valid over connected domains coupled through 
interfacial conditions. To demonstrate the applicability of these 
methods, we have examined the eigenvalue problems that describe the 
linear stability of two superposed Newtonian and inelastic power law 
fluids in plane Poiseuille flow for a selected range of parameters. Both 
algorithms provide accurate results and the pseudospectral code 
appears to be more efficient in handling linear stability problems. 
CC? 1992 Academic Press, Inc 

1. INTRODUCTION 

The compound matrix method was formulated by Ng 
and Reid [ 1,2] to deal with boundary value and eigenvalue 
of stiff differential operators with separated boundary con- 
ditions. More recently, Yiantsios and Higgins [3] extended 
the compound matrix method to equation sets valid over 
connected domains coupled through interfacial conditions 
and examined the linear stability of two superposed New- 
tonian fluids in plane Poiseuille flow. In general it has been 
shown by Ng and Reid [ 1,2] that the compound matrix 
method is superior to the shooting method for solutions of 
stiff eigenvalue and boundary value problems. However, 
similar to shooting techniques it can only track a single 
eigenvalue. Moreover, since an iterative technique is used 
to calculate the eigenvalue a good initial guess for the 
eigenvalue is required. When applying this technique to 
eigenvalue problems which describe the stability of various 
systems a knowledge of stability of other modes is also 
required. Hence, as suggested by Yiantsios and Higgins [ 31 
it is advantageous to use a method that calculates all the 
eigenvalues for the described problem (i.e., finite elements) 
and then reline the calculations for a desired mode. 

The spectral Chebyshev tau method first developed by 
Orzsag [4] to investigate the linear stability of a single 
fluid in plane Poiseuille flow can also be used to solve 
stiff boundary value and eigenvalue problems. This method 
approximates discrete eigenvalues belonging to coo eigen- 

functions with infinite order accuracy. Unlike the com- 
pound matrix method, with this technique all eigenvalues of 
the spectrum can be obtained accurately without the 
requirement of a good initial guess. 

In this work we have extended the spectral Chebyshev tau 
method to equation sets valid over connected domains, 
coupled through interfacial conditions. Since the spectral 
Chebyshev tau method is only valid for differential 
equations with polynomial coefficients, a pseudospectral 
Chebyshev method is also developed to handle differential 
equations with arbitrary coefficients. To demonstrate the 
applicability of these techniques we have examined the 
eigenvalue problems which describe the linear stability of 
two superposed Newtonian and inelastic power law fluids in 
plane Poiseuille flow. 

2. SPECTRAL TECHNIQUES 

2.1. The Spectral Chebyshev Tau Method 

In linear stability analysis of multiphase flows, the evolu- 
tion equation can be written as 

Mi($i) = 0, i = 1) 2, . . . . z, (1) 

where oi is the solution of ith layer and Mi is an operator for 
ith layer, which contains all the spatial derivatives of 4,. The 
linear stability of such flows is described by (1) and the rigid 
and interfacial boundary conditions. 

The discretized solutions to (1) are represented by 

4’ $,(Y), 
n=O 

n=o, 1 , . . . . N; i = 1, 2, . . . . Z, (2) 

where tjn’s are the trial functions, and the a:)‘~ are the 
expansion coefficients. It has been shown by Orzsag [4] 
that Chebyshev polynomials provide excellent trial func- 
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tions because of their rapid convergence. Hence, we use 
these polynomials as our trial functions. In general, the 
trial functions do not satisfy the governing equations and 
boundary conditions. Thus, it is necessary to have weighted 
residual conditions (WR). The test functions chosen for the 
Chebyshev trial functions are 

X,(Y) = 
2 

c,n Jr-j7 
T,(Y), n=O, I,..., N, (3) 

where 

c, = 0, n<O 

c, = 2, n=O 

c,= 1, n>O 

and the weighted residual conditions are given by 

I 

Mi(4”) X,(Y) dY =O, 
-1 

i= 1, 2, . . . . 1; n = 0, 1, . . . . N, (4) 

upon expansion of equations resulting from this expression 
and boundary conditions in terms of Chebyshev polyno- 
mials and application of tau method an algebraic eigen- 
value problem of the form (A,,?“+ ... +A,L+A,)X=O 
is obtained. Upon transformation of this expression a 
standard generalized eigenvalue problem of the form 
(A - BA)X= 0 results, the eigenvalues of which can be 
determined by use of a generalized matrix eigenvalue solver 
such as the QR algorithm. 

2.2. The Pseudospectral Chebyshev Method 

It has been shown by Orszag [S] and Kreiss and Oliger 
[6] that the pseudospectral method (i.e., in this paper 
pseudospectral method refers to the formulation in the 
expansion coefficients) can be applied efficiently in the 
physical space in contrast to the spectral Chebyshev tau 
method which must be carried out in the transformed space. 
This fact enables us to use the pseudospectral method 
efficiently for differential equations with arbitrary coef- 
ficients. 

In the pseudospectral method the test functions are 
shifted Dirac delta-functions 6( y-y,), where yis are collo- 
cation points in the interval (- 1, 1). Upon substitution of 
shifted Dirac delta-functions into (4), the weighted residual 
condition for the pseudospectral method is obtained: 

s 

1 
Mi(dN) S(Y - Yj) dY=O, i=l,2 ,..., I. (5) 

-I 

This formulation requires that (1) be satisfied exactly at 
collocation points. Hence, 

~ibY)l,.=.,,=0> i-l,2 I. 3 .“1 (6) 

Similar to the spectral Chebyshev tau method, the equa- 
tions resulting from (6) and the boundary conditions are 
expanded in terms of Chebyshev polynomials and an 
algebraic eigenvalue problem is obtained. 

In the following two examples, the detailed procedure 
for the formulation of standard generalized eigenvalue 
problems of equation sets valid over connected domains 
coupled through interfacial condition is outlined. 

3. TWO SUPERPOSED NEWTONIAN FLUIDS 

We consider two Newtonian fluids flowing steadily in 
two distinct layers between two parallel plates. Since 
detailed derivations of governing equations and boundary 
conditions were given by Yih [7], only a brief account is 
presented in the following. 

The unperturbed velocity profiles nondimensionalized 
with respect to the interfacial velocity U, are 

where 

Uk=1+e,y+fky2, k= 1, 2, (7) 

m2-8’ -(m2+E) e, =- 
E2$& ’ fi= (&z+&) ’ 

e2=e,lm2, f2=.fi/m2, 

in which mk =pk/p, and E = d,/d, are the viscosity and 
depth ratios, respectively. The subscripts 1 and 2 correspond 
to the upper and lower layers and all the physical and 
geometric parameter ratios are defined in terms of the lower 
layer properties to that of the upper layer. 

To study the interfacial stability of this system, we 
introduced two-dimensional infinitesimal disturbances into 
equations of motion and continuity, and then linearized 
these equations with respect to the perturbation quantities. 
As is customary in stability analyses, we assume that all per- 
turbation quantities have an exponential time dependence 
and periodic spatial dependence of the form exp icc(x - ct), 
where M is the dimensionless wave number of the distur- 
bance in the flow direction x, c is the dimensionless complex 
wave speed, and t is the dimensionless time. Upon sub- 
stitution of these variables into equations of motion and 
continuity and elimination of the pressure terms the 
stability governing equations of two superposed Newtonian 
fluids are obtained. These equations are 

= q5p” - 2cZq5;: + ci4cj,, k= 1, 2. (8) 
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The above equations, along with no-slip boundary 
conditions and the continuity of velocities and stresses at 
the interface shown below, govern the stability of two 
immiscible Newtonian fluids, 

cJ,=(b;=o at y=l 

(l&=&=0 at ~‘=-a 

91=42 at y=O 

4; -4i=41(e2-elY(c- 1) at y=O 

4;’ + 24, = m2(qg + &b2) at y=O 

rn,(dT - 3c?&) - (4;’ - 3a$Yr) 

+icxRer,[(c-l)&+e,4,] 

-iclRe[(c-l)&,+e,#,] 

= iu Re(F+ a2S) #,/(c- 1) at y=O, (9) 

where rk = pk/p, is the density ratio, Re = p, U,d,/,u, is 
Reynolds number, F=(r,-l)gd,/Ui, and S=o/p,d,Ui 
are dimensionless groups expressing the effects of gravity g 
and interfacial tension rr. The above governing equations 
along with eight boundary conditions can be solved by use 
of the spectral Chebyshev method mentioned in the last 
section. 

Due to arbitrary depth ratios being considered, the 
governing equations and boundary conditions are needed 
to be linearly transformed to the range of - 1 < y < 1. We 
seek approximate solutions of the form 

(10) 

to (8). Equations for the expansion coefficient LZ~’ and uf’ 
are found by formally substituting (10) into (8). Upon use 
of the WR conditions (4) and equating the coefficients of 
the various T,(y) to zero, we obtain the equations 

2 
3(1 +&I4 2 [p3(p2-4)2- 3n2p5 

pzn+4 
p~ll(mod?) 

+ 3n4p3 - n’(n’ - 4)2p] aa’ 

,,-n(mod2) 

> 

xp(p2 - n’) + 
irk;;fk d, _ 2 

k 

xdP2+-2)* + 
> 

iur, R‘Z fk 
drn 

k 

p+n=l(mod2) 

Cd,-,p(p*-k--1)*) 

+c,p(p2- (n+ 1)2)] a?’ 

-62 
iu Re rk fk 

mk 

n(n - 1) up’ 

iu Re rk iu’ Re rk 
-+- 

mk mk 

ek(l -&I 
2 

+f (l--E)* 
k 4 II 

+ iu31;mfkrk cl + E)2 

k 

x ~~k~2c,-2+c,ap~(c,+c,~,)+u~~~2Cn 
[ 1 

+T [e,(l +e)+fk(l -a2)] 
k 

X(u~k~,c,-,+a :kJ’llcn)=o, (11) 
where c, =0 if n ~0, co= 2, c,= 1 if n >O, and d,=O if 
n < 0, d, = 1 if n > 0. 

Boundary conditions expanded in terms of Chebyshev 
polynomials are 

N 

c (- 1)” a;*‘=0 
II=0 

f [a?‘- up] T,(&,) = 0 
,I = 0 

p=n+I 
p+n=l(mod2) p + n s I (mod 2) 

l+E 
(I)- l+& (2) +7j--elan Te2aH 

2c -- 
C, p=n+l 

pfns l(mod2) p+nsl(mod2) 
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TABLE II 

p&n(mod 2) 

N 

x ,=;+, P(P2-n2bj;‘) 1 
pGn(mod2) 

, 

-u2[m2uj12) n ” -d’)] T (cl)=0 
i 

p+nrl(mod2) 

4 
i -(l+E)C, p=n+, pa61)+ed) 1 

p+n=l(mod2) 

12a2 N 64 
+(I++, ,J+, p”b”-C,(1+E)3 

p+nsl(&d2) 

x [(n+l)(n+2)(n+3)~~~,+3(n+2) 

x(n+3)(n+5)u;‘i5+6(n+3) 

x(n+4)(n+7)u$+ ...I 

p+n=l(mod2) 

1 
p+n=l(mod2) 

64m, 

+(1+&)3C,, 
[(n+ l)(n+2)(n+3)u;2:, 

+ 3(n + 2)(n + 3)(n + 5) uI;i 5 

+ 6(n + 3)(n + 4)(n + 7) u:;, + -dj 

N ia Re(F+ a2S) 
x T,(EI)- 1 u;‘)TJF,) = 0, 

-2.5 

(12) 
?I=0 (c- 1) 

i where E, = (E - l)/(s + 1). 

TABLE I 

Interfacial Mode Eigenvalues for Two Superposed Newtonian 
Fluids 

Viscosity 
ratio m2 c (Ref. 171) c (Spectral method) 

loo 2.71932287 +2,05299x lo--% 2.71925 + 2.05258 x IO-% 
60 2.56766490+8.26910x lo-? 2.56747+8.26842x 10m3i 
20 2.06020558 +1.58950x IO-'i 2.06008 + 1.58908 x lo-si 
10 1.67219917 + 1.24810x IO-% 1.67213 + 1.24773 x lo-‘i 
5 1.33333333 + 7.53400 x lo-? 1.33333 + 7.5291 x 10m4i 

Note. a=1.0x10~2,Re=10.0,r,=1,F=0,S=0,~=1.0. 

In order to obtain an approximate solution, an N term 
expansion of #i and 1+5~ is constructed. This results in a set 
of 2(N+ 1) equations that must be solved in conjunction 
with eight boundary conditions. To solve for the unknowns 
we utilize the tau method as developed and extensively 
applied to ordinary differential equations by Fox and 
Parker [S]. Application of this method to (11) for 
n = 0, 1, . ..) N-4 in each layer, in combination with the 
eight boundary conditions results in a set of 2(N+ 1) 
simultaneous equations which constitute an algebraic 
eigenvalue problem of the form (A - Bc)X= 0. The eigen- 
values (i.e., c’s) are then determined using a general matrix 
eigenvalue solver, namely the QR algorithm. To test the 
effectiveness of the spectral Chebyshev tau method, we have 
carried out extensive numerical calculations. Some of the 
representative results are given in the following. 

In Tables I and II we compare our numerically calculated 
eigenvalues with those obtained by Yih’s longwave 
asymptotic approach. For a = 1.0 x lo-‘, as shown in 

Interfacial Mode Eigenvalues for Two Superposed Newtoruan 
Fluids 

Viscosity 
ratio rn2 c (Ref. [7]) c (Spectral method) 

100 2.71932287+2.05299x lo-‘i 2.11932 +2.05300x lo-‘i 
60 2.56766494+8.26910x lo-% 2.56766+8.26909x lo-% 
20 2.06020558+1.58950x lo-% 2.06021+1.58952x lo-% 
10 1.67219917 + 1.24810x 10m6i 1.67220 + 1.24810 x lOmbi 

-4.0 I 
-6.0 -7.5 -7.0 -6.5 -6.0 -5.5 -! 

log a 

5 1.33333333 + 7.53400 x lo-‘i 1.33333 + 7.53439 x 10-/i FIG. 1. Imaginary part of wave speed m the hmtt E 4 co, Ke = 1.0, 

r2 = 1.0, m, = 2.0, E = 1 x 104: - - - - Yiantsios and Hi&n’s asymptotic 
Note. a= 1.0x 10m5, Re= 10.0, r2= 1, F=O, S=O. E= 1.0. results; ~ Numerical results. 
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-1.0 I 0.0 2.0 4.0 6.0 6.0 10.0 

E 

FIG. 2. Neutral stability contour for two superposed Newtonian 
fluids, Re = 0.1, m, = 20, rz = 1.0, F= 0, S = 0, S = stable, U = unstable. 

Table I, the numerical results are indistinguishable from 
Yih’s asymptotic results. However, as LX is increased up to 
1 .O x 10 ~ ‘, as depicted in Table II, our numerical and Yih’s 
asymptotic results are slightly different. This is expected 
because the behavior of the interfacial mode can no longer 
be completely described by the method of longwave 
asymptotics due to an increase of the disturbance wave- 
number (cI). We have also compared our numerical results 
shown in Fig. 1 with the thin layer asymptotic results of 
Yiantsios and Higgins [3]. The numerical results are in 
complete agreement with the asymptotic results. 

Unlike the compound matrix method, not only the spec- 
tral Chebyshev tau method can obtain all eigenvalues of the 
spectrum but also determines them accurately without a 
need for a good initial guess. Hence, this method enables us 
to determine the eigenvalue describing the linear stability 
of systems under consideration at any disturbance wave- 
lengths in one step. A typical stability contour is shown 
in Fig. 2. In all our computations less than 30 terms (i.e., 
Nd 30) were required to obtain convergent eigenvalues 
for tl d 3.0 with double-precision arithmetic. However, 
for a > 3.0 due to significant round-off errors, quadruple 
precision arithmetic had to be utilized. The neutral stability 
contours generated with this numerical technique are in 
complete agreement with results of Yiantsios and Higgins 
for c1 d 3.0 while for larger c(‘s some minor deviations are 
observed in the absence of interfacial tension. 

4. TWO SUPERPOSED POWER LAW FLUIDS 

Detail derivation of the stability governing equations for 
two superposed power law fluids has been carried out in an 

earlier publication [9] by us. Hence, no derivation of the 
governing equations will be presented in this section. 

The constitutive equations used in this study is the power 
law model, 

lk = mk(ill ?k)niml,Z +k> (13) 

where 

p, = (vu, + vu;), k= 1, 2. 

The unperturbed velocity profiles for this model are 

u, = ReLri 
1 

+ ,) {(Re(L~+~,))‘“‘+“‘” 

- (Re(L + b,))‘“‘+ l)/nl} 

u, = n2h2 (?I2 + I )/HZ (14) 

ReL(n,+ 1) 
R” (Ly+b,) 
h, > 

where 

R, = m/m1 

and L and b, are simply obtained from the continuity of 
normalized velocity at the interface by a Newton-Raphson 
procedure. The stability governing equations are 

h,&, 
+dk - 

{( > Re (?iz”-‘) 

+(+)[-$(j:-l)]], k=l,2 (15) 
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the no slip boundary conditions and the continuity of 
velocities and stresses at the interface are 

q4,=$4; =o at y=l 

fj,=q5;=0 at y=--E 

4’ = d2 at y=O 

4; -~;=~‘(3*(~)-3l(~))l(c- 1) 

at y=O 

n,h,(a2~,+~;‘)j?‘~‘=n2h,{Cr2~,+~~}j;2~’ 

at y=O 

+ 4ci2@, j;’ ~ ’ - 4h, cl’& y;‘~ ’ 

+Re{ -ictc& +icc(@, -d,j,)} 

- r2 Re{ -ictc& + icc(& - &lj,)} 

= ia Re(P+ a*S) #/(c - 1) at y =O. (16) 

Unlike the Newtonian case, the governing equations 
do not have polynomial coefficients; hence the pseudo- 
spectral Chebyshev method is employed. First the stability 
governing equations are transformed in the range of 
- 1 < y < 1 and then approximations to 4, and & of the 
following type are assumed: 

o,= : 4”UY) 
n=l 

d2= f 

(17) 

U%(Y). 

n=l 

+pEy f P(P2-n2)a;’ 
n p=n+2 

p--n(mod2) 

+ 2p4,(~,) 
C, i pa?’ + p 5k( y;) UII“ 

p=n+l 
p+n=l(mod2) 

+ i p7,(yJ up’- 2 
[ 

P~,(Y-) 
Cl! 

i p( p2 - n’) UY) 
p=n+* 1 

pzn(mod2) 

[ 

4cw, 
+ic (l+E)2c, p=“+2 P(P2-n2W 5 

psn(mod2) 

- a3rk up) II Tn(Y,) = 0, (18) 

where pk( yi) to p7k(yj) are constant parameters that are 
given in the Appendix. The boundary conditions in term of 
(17) are 

5 Q=O 
II=0 

lf n .2a”‘XO 
n=O 

i (-l)“u:‘=O 

5 (uj,” -UP’) T,(&,) = 0 
fl=O 

2BEl 

C,, 
f pu;L~ 

p=n+ l n 
p+n-l(mod2) 

X pa:’ + BE3ar) - BE4ar) 1 p=n+l 
p+nzI(mod2) 

+2’ 
C, 

f pa:‘- 2 purl]} T,(E,) =O 
p=n+l p=n+l 

ptn~l(mod2) pfnsl(mod2) 

Upon substitution of (17) into the governing equations 
and utilizing the WR conditions (6) we obtain the dis- 
cretized governing equations 

PW 
.%{e 2 

p[p2(p2-4)2- 3n2p4 

+ 3n4p2 - r?(n’ - 4)2] u,) 

+ 8P2hj) 
C(n+ l)(n+2)(n+3)u~~, 

c,, 

2 { CBE8a, (I) - BE9a!,*)] 
II=0 

BE6 N 
+- 

[ C, 
.=;+, P(P2-n2) u;’ 

pen(mod 2) 

n p=n+4 
psn(mod2) 

BE7 
-- 

Cl2 If p(p* -n’) ap’ 
p=n+* I> 

Tn(El)=O 
p=n(mod 2) 

BE12u”‘+ BE19u”’ ” ” 

+ 3(n + 2)(n + 3)(n + 5) uLkJ 5 

+ 6(n + 3)(n + 4)(n + 7) ur:, + . . . ] 

2BE 10 2BE17 
+- 

C” 
pa;‘+- 

p=n+l C, p=n+l 
p+n=l(mod2) p+n=l(mod2) 
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BE13 
+- n p(p2 - n2) a;’ 

BE20 
f- 

C, 
p(p2 - 2) UF’ 

p=n+2 
pEn(mod2) 

8BEll 
+- [(n+ l)(n+2)(n+3)@:, 

c,, 

+ 3(n + 2)(n + 3)(n + 5) a;1 5 + ‘. 1 

8BE18 
+- [(n+l)(n+2)(n+3)~:~;, 

C,I 
+3(n+2)(n+ 3)(n + 5) aL21,+ .‘.I 

BE16a”‘+ BE23u”’ ,I ” 

2BEl5 
+- 

Cfl 
f pub”+z!y 2 pup] 

p=n+ I n p=n+l 
p+n=l(mod2) p+n=l(mod2) 

p=n+l 
pfnEl(mod2) 

2BE14 
+- f pa;’ 11 Tn(E,)=O, c,, p=n+ 1 

ptn~ I(mod2) 

(19) 

where BE 1 to BE23 are constant parameters that are given 
in the Appendix. 

Similar to the Newtonian case approximate solutions to 
c$, and #2 must be obtained. However, if N terms in (17) are 
used, 2(N- 3) equations result from the discretization of 
stability governing equations which have to be solved in 
conjunction with eight boundary conditions. It has been 
shown earlier [lo] that collocation approximation to 
Orr-Sommerfeld-type equations are less straightforward 
due to the double boundary conditions at the wall. Hence 
to avoid the overdeterminacy caused by these double 
boundary conditions a standard set of collocation points, 
i.e., 

y, = cos( nj/N) (20) 

have been proposed for j = 2, . . . . N - 2, dropping the dif- 
ferential equation conditions at j= 1 and j= N- 1. This 
procedure achieves spectral accuracy but gives rise to a non- 
optimal order error. Herbert [ 1 l] has devised another 
collocation method, where he replaces the collocation 
points suggested by Eq. (20) with 

j=O, 1 , . . . . N - 4, (21) 

to obtain spectral accuracy with an optimal order error. 
We have generalized (21) to account for arbitrary depth 

ratios. The transformed version of this equation for each 
layer is 

lay>~,,j=O, l,..., N-4; 

yi=(l+El)COS y 
[ ‘I 

(22) 

2(N-4) +‘I’ 

.sl> y> -l,j=N-4, N-3 ,..., 2(N-4). 

Utilizing the above collocation points, the stability 
problem is reduced to a general eigenvalue problem and the 
QR algorithm is utilized to compute the eigenvalues. 

Table III shows a typical comparison between our 
numerical results and asymptotic results of Khomami [9]. 
The numerical results are in excellent agreement with the 
asymptotics results. This method also enables us to deter- 
mine the linear stability of this system at all disturbance 
wave lengths. A typical stability contour (i.e., for a power 
law fluid, n2 = 0.5 and a Newtonian fluid nl = 1.0) is 
depicted in Fig. 3. This figure clearly indicates the dramatic 
effect of shear thinning viscosity on the stability contour. 
This issue is beyond the scope of this paper and is discussed 
elsewhere [9]. 

In order to compare the convergence rate of spectral and 
pseudospectral techniques, we have also considered the 
interfacial stability of two superposed Newtonian fluids 
with the pseudospectral algorithm. Both algorithms require 
at least 10 terms of the expansion to accurately estimate the 
longwave behavior. However, in the intermediate wave 
numbers (i.e., c( < 3) at least 14 and 18 terms were required 
to obtain convergent eigenvalues with the pseudospectral 
and spectral techniques, respectively. Hence, our results 
indicate that the pseudospectral algorithm is more efficient 
when applied to linear stability problems. 

It is worth mentioning that both the spectral tau and 
pseudospectral method have been shown to give rise to 
spurious eigenvaues in addition to physical ones in the 
linear stability analysis of single phase incompressible plane 
shear flows [S]. In our studies, we also observed similar 
spurious modes which behave hi a similar fashion to those 
obtained in single phase studies. 

TABLE III 

Interfacial Mode Eigenvalues for Two Superposed Power Law 
Fluids 

n, n2 R, c (Ref. [9]) c (Pseudospectral Method) 

0.5 1.0 0.5 1.1867 + 1.6617 E-5 1.18664 + 1.66139 E-5 
1.0 0.5 2.0 1.2385 + 7.9184 E-6 1.23844 + 7.91700 E-6 
1.0 0.75 2.0 1.1350 + 3.8922 E-6 1.13498 + 3.89242 E-6 
0.75 1.0 0.5 1.1236 + 8.5941 E-6 1.12355 + 8.59516 E-6 
1.0 0.35 2.0 1.3129 + 1.1378 E-5 1.31285+ 1.13739 E-5 
0.35 1.0 0.5 1.2170 + 2.1434 E-5 1.21702 + 2.14284 E-5 

Note. a=1.0x10~2,Re=0.1,r,=1.0.F=0,S=0,~=1.0. 

581/1CG’2-7 
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-1.5 0 -0.5 0.0 

log E 

\ 

0.5 10 

FIG. 3. Neutral stability diagram for two superposed power law 
fluids, Re=O.l, R,=2.0, n,=l.O, n,=O.S, r,=l.O, F=O, S=O; 
S = stable, U = unstable. 

CONCLUSIONS 

Two spectral codes, namely, spectral Chebyshev tau and 
pseudospectral-Chebyshev, were developed to solve eigen- 
value problems for equation sets valid over connected 
domains coupled through interfacial conditions. The 
Chebyshev tau method is applicable to equation sets with 
polynomial type coefficients while the pseudospectral 
technique is applicable to equation sets with arbitrary type 
coefficient. As we have shown in this paper both of these 
methods are capable of accurately solving eigenvalue 
problems with interfacial boundary conditions. 

The pseudospectral technique outlined in this paper is 
superior to its spectral counterpart when applied to linear 
stability problems, due to its faster convergence and the 
ability to handle differential equations with arbitrary coef- 
ficients. However, the accuracy of the results obtained with 
this technique is highly dependent on the choice of colloca- 
tion points. Hence, a proper selection of collocation points 
is crucial in successful application of this method. 

APPENDIX 

2 

[ 

2h,a2(n, - 2) djp- ’ 
p4k(yi)=(l+~) Re & -(Y,l] 

P5k(Y,) = 
1 

* [)jk(y,)]““- 1 

I “d*,“; d2;lj2- ’ (y,)j 

4U, ark 
pMy,)= (1 +E)2 

p7,(Yi)=r,L'ia'+Ur,~(Yj) 

BEI = U,(O) 

BE2 = U,(O) 

BE3 = !$t!.L$o) 

BE4 = !$!E$ (0) 

n,h, j’;‘- ‘(0) 
BE5=---p 

n, flfp’(0) 

4 
BE6=(1+&)* 

4 
BE7=BE5 (1 +E)2 

BE8 = u* 

BE9 = a2. BE5 

BElO = 2u2;y;;(o) (4 -n,) 

BEll= 

-8n,j;‘p1(0) 
(1 +E)3 

&'I ~ ' 

BE12= -n,cr2- 
dy (O) 

BE13 = 
-4n,(dj~‘p’/dy)(0) 

(l+&)* 

BEl4== 

BEl5 = 2 Re uul(0) 
l+s 

BE16= -Re aj,(O) 

BE17=2(n2-4i~~~~~*-‘(o) 

BE18 = 8n2h2%-‘(0) 
(1 +E)3 
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d’“‘P 1 

BE19 =n,h,ct2 L 
dy (‘) 

4n,h, dj’;2-l 
BE20=(I+i:)2 dy (‘I 

2r, Re CI 
BE21 = ~ 

l+E 

BE22 = 
-2r, Re aU,(O) 

l+e 

BE23 = c(r2 Re j*(O). 
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